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Density change effects on crystal growth from the melt

Massimo Conti
Dipartimento di Matematica e Fisica, Universita´ di Camerino, and Istituto Nazionale di Fisica della Materia,

Via Madonna delle Carceri, I-62032, Camerino, Italy
~Received 21 March 2001; published 17 October 2001!

When a crystal grows from its undercooled melt the local density changes, driving a convective flow in the
liquid phase. Then, the purely diffusional description of the process ceases to be satisfactory. Moreover, the
dynamic pressure associated with the flow field may affect the melting temperature~and the effective under-
cooling! of the system. Both these effects have been addressed in recent experimental work. In the present
study we derive a thermodynamically consistent phase-field model that accounts for the density change effects
in the solidification of a pure substance. Starting from a thermodynamic potential that includes squared gra-
dient terms for both the order parameter and the density, the field equations are derived assuming positive local
entropy production. The model is numerically solved in one dimension to show deviations from the classic
phase-field description of the same phenomenon.
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I. INTRODUCTION

Solidification from an undercooled melt is accompan
by a local change of density. The solid is generally den
than the liquid. The change is typically a few percent
simple metals. In some cases~silicon, bismuth, water! the
reverse is observed, and the liquid expands upon freez
The change of density during the phase transition caus
flow in the liquid towards the solid-liquid interface or awa
from it, depending on the sign of the density effect. Th
mass advection in turn carries heat. Consequently, eve
absence of natural convection in the liquid phase, the as
of the growth process that involves pure diffusion cease
be satisfactory and must be coupled with an accurate des
tion of hydrodynamic phenomena. This point emerged in
interpretation of some recent experiments conducted
Glicksman and co-workers aboard the space shuttle@1#. In a
microgravity environment, where natural convection w
suppressed, these authors studied the growth of a free
drite. The experimental data show a departure from the
dictions of the Ivantsov diffusional theory@2#. A careful re-
examination of the data, based on a refinement of
Ivantsov approach@3# to incorporate flow effects, showe
that, apart from some finite size effects, any inconsiste
could be removed taking into account the additional h
transfer due to the advection mechanism@4#.

A further effect due to the density change~and to the
consequent flow field! results from the dynamic pressu
drop across the melt. At large growth rates the pressure
crease~or decrease! at the interface may significantly alte
the equilibrium melting temperature. This point has be
previously considered by Horvay@5#, who studied the ten-
sion field created by a spherical nucleus freezing into
infinite undercooled melt of lower density. In his stud
based on the free boundary approach, the liquid phas
treated as an incompressible inviscid fluid and the transi
temperature is viewed as affected by both the curvature
the nucleus and the hydrodynamic pressure due to the fl
A similar analysis was subsequently conducted by Char
and Rubinstein@6# for the growth of a planar interface. Bot
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these studies showed that, due to the effects of the pres
field, some inconsistencies of the classic Stefan formula
of the problem could be removed and the interface veloc
is free of singularities during the entire freezing process. I
worth noting that a shift of the equilibrium melting temper
ture induced through a static pressure field has been rece
proposed as a method to control the growth dynamics of
solidification process@7#.

The theoretical description of density effects in solidific
tion has been generally based on the free boundary form
tion of the problem, coupled with proper interface bounda
conditions. With respect to the classic Stefan problem,
latter must incorporate additional constraints for the m
and momentum conservation. A more stimulating appro
could be based on the phase-field model~PFM!, which re-
places the sharp solid-liquid interface with a diffuse inte
face. In this model the phase of the system at each poin
characterized by an order parameterf(x,t) that assumes
constant values in the bulk phases and varies continuous
the interface region. A suitable thermodynamic potentia
then constructed, that depends onf as well as on the othe
relevant thermodynamic variables; squared gradient te
account for the energy cost of the interface. The extrem
tion of the functional in respect to these variables results
the dynamic equations for the process. Several studies
analytical@8–13# and numerical@14,15# established on a firm
basis the notion that the phase-field model for a pure s
stance, in the limit of a vanishingly small interface widt
reduces to the sharp-interface diffusional equations, incor
rating in a natural fashion the Gibbs-Thomson effect as w
as the kinetic undercooling of the moving interface. Mor
over, the extension of the PFM to the solidification of bina
alloys @16–22#, accounts for non-equilibrium effects as so
ute trapping , and was able to interpret complex phenom
as the formation of solute bands in solidification far fro
equilibrium.

Caginalp and Jones@23,24# were the first to extend the
phase-field model to incorporate flow effects, within the co
text of a unified and consistent derivation. They obtaine
system of differential equations for the variables tempe
©2001 The American Physical Society01-1
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ture, order parameter, fluid velocity, density, and pressure
the momentum equation, capillary and viscosity effects w
neglected. An asymptotic analysis led to a new interface
lation, showing that the front velocity in the kinetic unde
cooling term should be replaced by the front velocity min
the normal fluid velocity.

In a subsequent study, Oxtoby@25# introduced a grand
canonical potential in which, besides the nonconserved ph
field, also the local density is regarded as a~conserved! order
parameter. The dynamic equation for the growth rate res
from the extremization of the potential in respect to t
phase field, and the Navier-Stokes equation is written in
interfacial region using an expression for the capillary str
tensor that is derived resorting to density functional ar
ments. Then, the coupled problem to determine the gro
rate and the flow field is stated through the above equat
and the mass conservation condition. Steady state solu
of the model, obtained in isothermal conditions, put in e
dence the role of sound modes in density transport.

In the present paper we present a phase-field model
accounts for the change of density in the solidification p
cess. Following a scheme suggested by Charach@26#, the
entropy production equation, coupled with the balance
mass, momentum, and energy, is used to derive gover
equations of the model that drive the system towards e
librium. In this sense the model extends the approach
Antanovskii @27# and Anderson, McFadden and Whee
@28#, incorporating the nonconserved order parameter
allowing one to treat solid-liquid phase transitions. Seve
ideas come also from the analysis of Yang, Fleming, a
Gibbs @29# for a liquid-gas interface of a one compone
system. The scalar part of the entropy production fixes
dynamic equation for the structural order parameter; the v
tor contribution results in the classic Fourier expression
the heat flux. A third term, of tensorial character, allows
find an expression for the stress tensor, starting from
assumption that this contribution is only due to viscous d
sipation. This form of the capillary tensor satisfies the Eul
Lagrange conditions for the grand canonical potential wh
the system is in equilibrium.

The equations of the model have been solved numeric
in one dimension, to study the coupled effects of the therm
mechanical, and chemical relaxation on the growth proc
As solidification starts, the sudden contraction of the liqu
in front of the interface originates a pressure~and density!
wave that propagates into the sample. The results of
simulations show that this phenomenon, as well as the
namics of the interface advancement, of the advected fl
field and the stress field is properly described. For isother
growth we found that in a wide range of temperatures
growth rate increases almost linearly with increasing the
terface undercooling. When the thermal field is allowed
relax, we observe that the purely diffusive dynamics of
process is only slightly affected by the convective heat tra
fer. This point merits further investigation. At present w
cannot predict whether these small deviations could resu
more remarkable effects when different materials or geo
etries are considered.

The paper is organized as follows. In Sec. II the equil
05160
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rium of a two-phase system will be analyzed. The dynam
equations of the model will be derived in Sec. III, using t
concepts of the extended irreversible thermodynamics
Sec. IV we present the scheme for the numerical solution
the model, and in Sec. V the results of the numerical sim
lations will be discussed. The conclusions will follow i
Sec. VI.

II. EQUILIBRIUM OF A TWO-PHASE SYSTEM

A. A closed system

Let us first consider a closed solid-liquid system in eq
librium at fixed temperatureT and volumeV. The local state
of the system is characterized by a coarse grained den
r(x,t) and a nonconserved order parameterf(x,t). We pos-
tulate a generalized Helmholtz free energy density of
form

c8~r,f,T,“r,“f!5c~r,f,T!1
1

2
dF

2~“r!21
1

2
eF

2~“f!2,

~1!

wherec(r,f,T) is the bulk free energy density and the gr
dient terms account for nonlocal contributions in the inter
cial region. We assume thateF anddF depend only on tem-
perature. We wish to derive the equations for the spa
variation of the densityr and the phase fieldf. As the whole
system is closed, minimizing the total Helmoltz free ener
gives

d~F2m0M !5dE ~c82m0r!dv50, ~2!

wherem0 is a Lagrange multiplier; the corresponding Eule
Lagrange equations read:

dF
2
“

2r2
]w

]r
50, eF

2
“

2f2
]w

]f
50, ~3!

where

w~r,f,T!5c„r~r !,f~r !,T…2r~r !m0~T!. ~4!

Let us consider the planar one-dimensional case and
sign z50 at the position of the Gibbs dividing plane~phase
interface!. In the bulk phases, recalling that the chemic
potential is given bym5]c/]r, Eqs.~4! and ~3! reduce to

ms5m l5m0 ; S ]c

]f D
f5fs

5S ]c

]f D
f5f l

50, ~5!

where the subscriptss,l indicate the physical properties i
the bulk solid and liquid phases, respectively. Multiplyin
the first of Eqs.~3! by rz and the second byfz and adding
them together, we obtain, through simple integration

1

2
~dF

2rz
21eF

2fz
2!1r~z!m0~T!2c„r~z!,f~z!,T…5P0~T!.

~6!
1-2
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DENSITY CHANGE EFFECTS ON CRYSTAL GROWTH . . . PHYSICAL REVIEW E64 051601
Here P0(T) is clearly the coexistence pressure at te
peratureT, since in the bulk, whererz ,fz50 it reduces to
the usual expressionp5mr2c. Equations~5! and~6! define
the chemical and mechanical equilibrium of the two-pha
system. Equations~1! and~6! allow to find a simple expres
sion for the surface tension. We rewrite Eq.~6! as

~dF
2rz

21eF
2fz

2!1r~z!m0~T!2c8„r~z!,f~z!,T…5P0~T!.
~7!

When Eq.~7! is integrated over the total volume of th
system~from 2L far in the solid to1L far into the liquid!,
it can be written as

F5m0M2P0V1gA, ~8!

whereA is the system cross section and the surface tensiog
is given by

g5E
2L

1L

~dF
2rz

21eF
2fz

2!dz. ~9!

This result extends to a solid-liquid phase transition w
density change well known results obtained either for flu
fluid interfaces or for solidification without density change

B. Equilibrium for an open system

When the mass constraint is relaxed, the variational pr
lem must refer to the functional@30#,

V5E @w8~r,f,T,“r,“f!#dv

[E Fw~r,f,T!1
1

2
dF

2~“r!21
1

2
eF

2~“f!2Gdv,

~10!

where w(r,f,T), is given by Eq.~4!, and reduces to the
grand canonical potential for the bulk phases in equilibriu
The corresponding Euler-Lagrange equations still read@see
Eqs.~3!#

]w8

]r
2

]

]xi
S ]w8

]r i
D50,

]w8

]f
2

]

]xi
S ]w8

]f i
D50, ~11!

wherer i , f i indicate spatial derivatives with respect to t
coordinatexi . Here and in the following the summation co
vention over repeated indexes is used; an explicit dep
dence of the functionw on its variables will be given later.

C. The capillary stress tensor

The equilibrium conditions~11! allow to find a general
expression for the capillary stress tensor. Let us denot] i
[]/]xi , and calculate the gradient of the grand canoni
potential density consideringT as a constant parameter:

] iw85S ]w8

]r D r i1S ]w8

]f Df i1S ]w8

]rk
D rki1S ]w8

]fk
Dfki .

~12!
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Using the Euler-Lagrange equations~11! in Eq. ~12!
yields

] iTik50, ~13!

where

Tik5d ikw82r i S ]w8

]rk
D2f i S ]w8

]fk
D

5d ikw82dF
2r irk2eF

2f ifk . ~14!

Equation ~13! states the mechanical equilibrium of th
system, in terms of an intrinsically symmetric capillary te
sorT, where components are defined through Eq.~14! (d ik is
the Kronecker symbol!. Following the method indicated in
@28# we show in the next section thatT represents the non
dissipative part of the overall stress tensor. An alternat
form of Eq. ~14! can be given observing thatw52p
1r(]w/]r) and using the first of Eqs.~3!:

Tik5d ikF2p1rdF
2
“

2r1
1

2
dF

2~“r!21
1

2
eF

2~“f!2G
2dF

2r irk2eF
2f ifk , ~15!

i.e., is in the diagonal part ofT the contribution due to the
bulk pressure is clearly decoupled from the interface ter
In the case of a planar interface normal toz, Eq. ~14! along
with the Euler-Lagrange conditions yields

Tzz52P0 , Txx5Tyy52P01dF
2r irk1eF

2f ifk ,

Txz5Tyz5Txy50, ~16!

and the surface tension is given by

g5E
2L

1L

~Txx2Tzz!dz. ~17!

Thus we see that the difference between the stress no
to the interface and the tangential stress is the surface ten
per unit length. This result is well known from the analys
of the equilibrium of fluid-fluid interfaces~see, for example
@29#!, and has been recovered here in a more general con

To summarize, for a planar interface the equilibrium pr
file for the phase and density fields is governed by

]zTzz50; eF
2fzz2S ]w

]f D50, S ]r

]t D50, ~18!

along with the condition of uniform and constant tempe
ture. In the next section, we shall derive the dynamic eq
tions for an out of equilibrium system.
1-3
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III. THE DYNAMIC EQUATIONS

A. The entropy production rate

We now address the nonequilibrium situation through
thermodynamic procedure, starting from the local balance
mass, momentum, energy and entropy. Let us denote
velocity field byvW , the specific energy bye8, and the specific
entropy bys8. The two latter quantities are determined
the specific free energyf 8(r,f,T,“r,“f) and in general
involve gradient contributions. The stress tensor will be
noted byP; JWE , JWS stand for the energy and entropy flu
vectors, respectively, ands is the entropy production rate
Finally, gW stands for a specific body force field. In terms
these variables the classical balance laws read

dr

dt
52r¹W •vW , ~19!

r
dvW

dt
5rgW 2¹W •P, ~20!

r
de8

dt
52¹W •JWE2P:¹W vW , ~21!

r
ds8

dt
52¹W •JWS1s. ~22!

The constitutive relations and the explicit form of th
fluxes will follow from the Courie principle and from th
local form of the second law of thermodynamics, which im
plies s>0. In addressing the solid-liquid transition we w
assume that the solid phase is at rest.

The specific Helmoltz free energy is given by

f 8~r,f,T,¹W r,¹W f!5
1

r
c8~r,f,T,¹W r,¹W f!5 f ~r,f,T!

1
1

2r
@dF

2~¹W r!21eF
2~¹W f!2#, ~23!

where f (r,f,T)5c(r,f,T)/r is the specific bulk free en
ergy. The nongradient part of the specific energy and entr
are defined by

s~r,f,e!52
] f

]T
; e~r,f,s!5 f ~r,f,T!1T s~r,f,e!.

~24!

Similar relations are postulated for the correspond
quantities incorporating gradient terms. Denoting

dS
2[

d dF
2

d T
; eS

2[
d eF

2

d T
; dE

25dF
22T dS

2 ; eE
25eF

22T eS
2 .

~25!

We obtain from Eq.~23!
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s8~r,f,e,¹W r,¹W f!5s~r,f,e!2
1

2r
@dS

2~¹W r!21eS
2~¹W f!2#,

~26!

e8~r,f,s,¹W r,¹W f!5e~r,f,s!1
1

2r
@dE

2~¹W r!21eE
2~¹W f!2#.

~27!

Under the above assumptions the differential form of
second law of thermodynamics reads

T ds85de82
] f

]f
df2

1

r2 Fp2
1

2
dF

2~¹W r!22
1

2
eF

2~¹W f!2Gdr

2
1

r
@dF

2~¹W r!d~¹W r!1eF
2~¹W f!d~¹W f!#. ~28!

Combining Eq. ~28! with the balance equation
~19!,~20!,~22! yields, after some manipulations,

r
ds8

dt
52

¹W •JWE

T
2

dF
2

T
¹W •S dr

dt
¹W r D2

eF
2

T
¹W •S df

dt
¹W f D

2
1

T

df

dt S r
] f

]f
2eF

2¹W 2f D2
1

T
~Pik1Tik!] ivk ,

~29!

whereTik is the capillary stress tensor defined by Eq.~15!
and rewritten, out of equilibrium, as

Tik5d ikS w82r
dV

dr D2dF
2r irk2eF

2f ifk . ~30!

We can rearrange Eq.~29! according to the entropy bal
ance equation~22! adopting an entropy flux

JWS5
1

T FJWE1dF
2dr

dt
¹W r1eF

2 df

dt
¹W fG . ~31!

Finally we find

r
ds8

dt
52¹W •JWS1s, ~32!

where the entropy production rates is given by

s52
1

T

df

dt S r
] f

]f
2eF

2¹W 2f D1JWE•¹W S 1

TD1
dr

dt
¹W r•¹W S dF

2

T D
1

df

dt
¹W f•¹W S eF

2

T D 2
1

T
~P1T!:“vW . ~33!

As observed by Charach and Fife@31#, the non classical
contributions of the above equation~third and fourth terms
on the right-hand side! can be treated, according to the Co
rier principle, as either of vectorial or of scalar origin, d
pending on the way in which the corresponding thermo
namic forces or fluxes are defined. However, to simplify t
discussion, extending the choice of Wanget al. in their
1-4
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model for solidification at constant density@12#, we assume
that eE

25dE
250; eS

2 , dS
25const. Moreover in the sequel w

shall neglect the spatial variation of botheF
2 anddF

2 , which
amounts to neglect the thermal gradient across the interf
Then, the constraint of local positive entropy production
duces to

df

dt
52GS r

] f

]f
2eF

2¹W 2f D , ~34!

JWE52K¹W T, ~35!

whereG is a positive constant andK is the thermal conduc
tivity. Moreover, assuming that the tensor contribution
only amenable to viscous dissipation, we obtain

P52T2P, ~36!

with P indicating the standard stress tensor for viscous
ids.

B. The grand canonical potential

We still need an explicit expression for the grand cano
cal potential densityw. At equilibrium the latter is postulated
as a double well over ther,f plane, with two minima of
equal depth centered at the bulk solid (r5rs ,f50) and
liquid (r5r l ,f51). The undercooling of the system is d
scribed shifting the liquid branch through an additional te
of the form p(f)rL̂(Tm2T)/Tm , where L̂ is the heat of
fusion per unit mass andTm the pressure dependent meltin
temperature~in the sequel we shall use also a volumet
latent heat defined asL5r l L̂).

The functionp(f) is monotonic and increasing withf,
assuming the valuesp(0)50, p(1)51. We note that from a
numerical perspective it is desirable to have fixed values
f for the bulk phases. This result@which is incompatible
with a linear dependence ofp(f)# is obtained choosing
p(f)5f3(10215f16f2).

In terms of a nondimensional density, scaled to the liq
density r l , the following form for w revealed suitable for
numerical calculations, retaining near the minima a para
loid structure that should capture the essential physics of
problem:

w~r,f,T!5ag~r,f!1p~f!rL̂
~Tm2T!

Tm
, ~37!

with

g~r,f!5
1

4
@f21b~r2S!2#@~f21!21b~r21!2#,

~38!

whereS5rs /r l . The well height depends on the paramet
a,b; the latter fixes the stiffness of the potential in ther
direction~i.e., the compressibility! with respect to the one in
the f direction. Notice that here and in the following w
neglect thermal expansion effects and we assume equal
pressibilities in both phases.
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To complete the model, we must specify an equation
state relating the local pressure to the temperature and
sity fields. The latter takes the form

p5r
]w~r,f,T!

]r
2w~r,f,T!. ~39!

Moreover, along a solid-liquid transition, the internal ener
densityẽ is assumed to change as

ẽ5ẽs1p~f!L. ~40!

Then, Eqs.~19!–~21!, ~34!, and ~39! along with specifi-
cations ~35!–~37! and ~40! and the Clapeyron equation
which accounts for the dynamical shift of the melting poin
represent the evolution equations for the system.

C. Nondimensional equations in one dimension

We assume equal values of the thermal diffusivityD and
the specific heat~at constant pressure! cp in both phases. A
nondimensional form of the model equations is obtain
adopting a reference lengthj and scaling time tot5j2/D.
Density is scaled asr/r l and a nondimensional temperatu
is introduced asu5cp(T2Tm0)/L, with Tm0 being the initial
melting temperature. The components of the stress te
and the energy densities are scaled tor lv0

2, wherev05j/t is
the natural reference for velocities. Retaining for simplic
the same symbols for the scaled~nondimensional! quantities,
and in absence of body forces, the model equations in
dimension read

]r

]t
1v

]r

]z
52r

]v
]z

, ~41!

]f

]t
1v

]f

]z
5m

]2f

]z2 2
m

ẽ2 F]g~r,f!

]f
2p8~f!r a ẽ~u1uD!G ,

~42!

r
]v
]t

1rv
]v
]z

52l1r
]

]z

]g~r,f!

]r
1l2r

]3r

]z31l3

]2v
]z2

1l1F]g~r,f!

]f
2 ẽ2

]2f

]z2 G]f

]z
, ~43!

]u

]t
1v

]u

]z
52p8~f!S ]f

]t
1v

]f

]z D1
]2u

]z21
l3

l5
S ]v

]zD 2

,

~44!

along with the state equations for pressure and the dynam
shift uD of the pressure dependent melting point:

p5l1Fr ]g~r,f!

]r
2g~r,f!G ; uD[

cp@Tm02Tm~p!#

L

5
1

aẽl1

12S

S
p. ~45!
1-5
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The parameters appearing in the above equations are
fined as

m5
GeF

2t

j2 , ẽ25
eF

2

aj2 , a5
L

cpTm0

L

eF

j

Aa
,

l15
a

r lv0
2 , l25

dF
2r l

j2v0
2 , l35

h

tr lv0
2 , l55

L

r lv0
2 ,

~46!

where h is the fluid viscosity. Notice that imposingr5S
51 the model collapses on the classical phase-field des
tion of the solidification of a pure substance. In this case~see
for example@12,32#! the model parametersm, ẽ, a, eF , and
a can be related to the material properties through

m5
msTm0

DL
, ẽ5

h

j
, a5

j

6A2d0

,

eF
256A2s h, a56A2

s

h
, ~47!

whereh is the interface thickness,s the surface tension, an
d05(scTm0)/L2 the capillary length,m is the kinetic under-
cooling coefficient that relates the interface undercooling
the interface velocityv I through v I5m(Tm02T). We as-
sume that the above equations still represent a reason
estimation of the model parameters in terms of the therm
physical properties of the material. To estimatedF we as-
sumed equal contributions of the gradient terms to the
face tension, i.e.,eF

25r ldF
2 .

To conduct the numerical simulations we referred to
thermophysical properties of Nickel. However, due to lim
tations of computational resources, and to render more t
table the numerical integration, a compressibility value h
been chosen, resulting in a sound velocity that is an orde
magnitude lower than the actual value. The interface thi
ness has been chosen ash52031028 cm. With a length
scalej5231024 cm, the resulting values of the nondime
sional model parameters are summarized in Table I.

TABLE I. Values of the model parameters.

Parameter Value

S 1.11
m 0.05

ẽ 0.001

a 530
b 1.6
l1 3560
l2 3.5631023

l3 1.0531021

l5 4940
05160
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ip-
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e
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IV. THE NUMERICAL METHOD

Equations~41!–~44! have been solved on the comput
tional domain 0<z<zm . Initially a phase boundary atz
5z0 separates a solid region (z,z0 ,f50,r5S) from the
liquid region (z.z0 ,f51,r51). The system is initially at
rest and the liquid is undercooled, i.e.,v(z,0)50, u(z

FIG. 1. The pressure wave originated at the solid-liquid int
face. The interface is located nearz51.60, and the different curve
represent the pressure field at times 0.002, 0.003, 0.004, 0.005
0.006, from left to right. The wave speed isvs553.25. The model
parameters are specified in Table I.

FIG. 2. The wave speed versus the slopel1 of the potential in
the r and f plane. The solid dots show the results of the pres
simulation. The line represents the theoretical prediction.
1-6
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FIG. 3. The phase~a!, density~b! and velocity~c! fields at different times. The curves are taken att50.09, t50.15, t50.21, andt
50.27 from left to right.
-
n

,

to
tr
a
a

ac

i-
d
s

ent
sity
el

he
a
the

e
r-
<z0,0)50, u(z.z0,0),0. For the phase, density, and tem
perature fields we imposed Neumann boundary conditio
the velocity is fixed asv(0,t)50 at the left end of the solid
while we chose (]v/]z)50 at z5zm .

An explicit Euler integration scheme was employed
advance the solution forward in time. Second order cen
differences were used to discretize the Laplace operator,
upwind differences for the convective terms. To ensure
accurate resolution of the solid-liquid interface the grid sp

ing was selected asDz5 ẽ; the time step required for numer
cal stability isDt50.431026. Following a standard metho
in computational fluid dynamics, the velocity field wa
05160
s;

al
nd
n
-

solved on a computational grid shifted ofDz/2 with respect
to the one used for the scalar fields.

V. THE NUMERICAL RESULTS

We first checked whether the model gives a consist
description of the mechanical effects due to the den
change in solidification. To this aim we solved the mod
equations at constant temperature (u520.005), fixing our
attention to the mechanical relaxation of the system. T
contraction of the liquid in front of the interface originates
pressure wave that propagates both into the solid and into
liquid. This effect is illustrated in Fig. 1, where only th
liquid portion of the system is shown. The solid-liquid inte
1-7
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face is located nearz51.6 ~here and in the following all the
numerical results will be presented in nondimensional for!,
and the pressure field is represented at different times.
initial pressure was initialized asp(z,0)50, and we see the
negative pressure front that propagates into the liquid.
velocity of the wave, estimated tracking the position of t
wave front, resultsvs553.25; this value is in excellen
agreement with the theoretical one for the liquid in equil
rium, (f51,r l51), assumed as a pure elastic medium. T
latter isA]p/]r5A0.5l1b@11b(12S)2#553.88. To better
characterize the process, we checked also the dependen
the wave speed onl1. In Fig. 2 we show both the numerica
results ~solid dots! and the theoretical dependencevs(l1)
~solid line!. The agreement between the two sets of d
~within 2%! is quite satisfactory. The small discrepancy
probably due to the dissipative behavior of our system.

After a short transient, growth at fixed temperature res
in a steady advancement of the solid-liquid interface. In F
3~a!–3~c! we show the phase, density, and velocity profi
obtained at different times, withu520.005. We observe
that the solid is at rest, while the liquid is advected towa
the interface with a velocityv520.114. The interface ve
locity, as resulting from the numerical data, isv I51.034.
Notice that this is the same value fixed by the mass con
vation law through the relationv5(12S)v I .

The growth of the solid phase into the liquid requires
departure from the local interfacial equilibrium. The classi
phase-field model incorporates in a natural fashion this ef
and, in the limit of a vanishingly small interface width, pr
dicts a linear dependence of the growth rate on the inter
undercooling. Caginalp and Jones@24# proposed a differen
interface relation, showing that in presence of fluid flow t
front velocity in the kinetic undercooling term should b
replaced by the front velocity minus the normal fluid velo

FIG. 4. The interface velocity versus the dimensionless und
cooling of the melt~solid dots!. The dashed line is the best fit of th
numerical data. The model parameters are specified in Table I
05160
he

e

-
e

e of

a

ts
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s

s

r-

l
ct

ce

ity. In steady growth, due to mass conservation, we still
pect a linear behavior for thev I(u) dependence. This is con
firmed by the results shown in Fig. 4, where we represent
growth rate versus the dimensionless undercooling. We
serve that in the range represented in the figure, the data
well fitted by a straight line. As the interface velocity a
proaches the sound speed a different behavior should be
pected, but this region is beyond the scope of the pres
study: for extremely high growth rates even the parabo
energy equation should be modified into a hyperbolic eq
tion, to account for the finite speed of the thermal wave.

A central aim of our investigation was to check the effe
of the convective heat transport on the dynamics of
growing interface. To this end we solved the full set of t
model equations, allowing the thermal field to relax towar
equilibrium. The initial undercooling was set asD52u(z
.z0,0)50.75; to avoid finite size effects for the therm
field the domain’s length was selected aszm525. Figure 5
shows in a log-log plot the interface velocity versus tim
~solid dots!. The arrows indicate the perturbation of th
growth rate due to the pressure wave impinging on the in
face, after the first and the second reflection on the doma
wall. In the same graph we represented the purely diffus
solution of the classic phase-field model~solid line!, ob-
tained by imposingr5S51. We observe that after a firs
transient the two sets of data converge towards the s
asymptotic behavior: in either case the best fit of the data
the late stage of the growth (t.3) indicates a power lawv
;ta, with a very close~within 0.15%! to the diffusional
valuea520.5.

Then, at present the effect of the convective heat tran

r- FIG. 5. The interface velocity as a function of time. The dime
sionless undercooling isD50.75. The solid line represents the di
fusive solution obtained withS51, b50 ~the classic phase-field
model!. The solid dots refer to the numerical solution of the pres
model. Notice the effect~indicated by the arrows! of the impact on
the interface of the elastic wave reflected at the domain’s walls
1-8
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on the growth process seems to be negligible. However
point is far from being conclusive. Our analysis, perform
in one dimension and for a planar geometry, discards in
esting phenomena as the early growth of a spherical nuc
or the onset of morphological instabilities. Further investig
tion is required to assess the relevance of density effects
a more complex growth dynamics.

VI. CONCLUSIONS

The classical phase-field model is a well established
to describe solidification far from equilibrium. In this pap
we derived the governing equations of the model in
framework of the extended irreversible thermodynami
considering different densities of the solid and liquid pha
and taking into account the effects of capillary stresses.
equations reduce to the classical formulation for equal s
and liquid densities. The numerical solution of the mod
shows that the sound wave propagation, the interfacial
namics, and the flow field are properly described.

We focused on the dynamical behavior of the growth p
v.

sa
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ri

D

05160
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cess for a dimensionless undercoolingD5c(Tm02T`)/L
,1, to investigate possible deviations from the purely diff
sive picture. Our first results seem to indicate that in the l
stage of the growth the process dynamics is almost u
fected by the density change effects. However, this po
deserves further investigation. Our analysis was performe
one dimension and utilizes a planar geometry. Perhap
more interesting behavior could be observed in a spher
geometry, due to the interplay between the capillary press
and the dynamical shift of the equilibrium melting point.
the early stage of the process we observed the effects o
pressure wave originated at the solid-liquid interface. In o
simulation the wave was redirected towards interface its
after a reflection at the domain’s walls. In a real process
the nucleation starts, the homogeneity of the melt is rapi
lost and all the growing nuclei become the source of~pri-
mary or reflected! elastic waves. This phenomenon results
a new interaction mechanism between the growing ger
and could alter in a significant way the first stage of t
crystal growth.
ys.

.

d
n

u.

.

@1# M. E. Glicksman, M. B. Koss, and E. A. Winsa, Phys. Re
Lett. 73, 573 ~1994!.

@2# G. P. Ivantsov, Dokl. Akad. Nauk SSSR58, 56 ~1947!.
@3# G. B. McFadden and S. R. Coriell, J. Cryst. Growth74, 507

~1986!.
@4# V. Pines, A. Chait, and M. Zlatkowski, J. Cryst. Growth169,

798 ~1996!.
@5# G. Horvay, Int. J. Heat Mass Transf.8, 195 ~1965!.
@6# Ch. Charach and I. Rubinstein, J. Appl. Phys.71, 1128~1992!.
@7# J. C. LaCombe, M. B. Koss, L. A. Tennenhouse, E. A. Win

and M. E. Glicksman, J. Cryst. Growth194, 143 ~1998!.
@8# G. Caginalp, Arch. Ration. Mech. Anal.92, 205 ~1986!.
@9# G. Caginalp, Phys. Rev. A39, 5887~1989!.

@10# G. Caginalp and P. Fife, Phys. Rev. B33, 7792~1986!.
@11# O. Penrose and P. C. Fife, Physica D43, 44 ~1990!.
@12# S. L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S.

Coriell, R. J. Braun, and G. B. McFadden, Physica D69, 189
~1993!.

@13# G. B. McFadden, A. A. Wheeler, R. J. Braun, and S. R. Co
ell, Phys. Rev. E48, 2016~1993!.

@14# H. Lowen, J. Bechhofer, and L. Tuckerman, Phys. Rev. A45,
2399 ~1992!.

@15# A. A. Wheeler, B. T. Murray, and R. J. Schaefer, Physica
66, 243 ~1993!.
,

.

-

@16# G. Caginalp and J. Jones, Ann. Phys.~Leipzig! 237, 66 ~1995!.
@17# G. Caginalp and W. Xie, Phys. Rev. E48, 1897~1993!.
@18# A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, Ph

Rev. E47, 1893~1993!.
@19# M. Conti, Phys. Rev. E56, 3197~1997!.
@20# N. A. Ahmad, A. A. Wheeler, W. J. Boettinger, and G. B

McFadden, Phys. Rev. E58, 3436~1998!.
@21# Zhiqiang Bi and Robert F. Sekerka, Physica261, 95 ~1998!.
@22# M. Conti, Phys. Rev. E58, 6101~1998!.
@23# G. Caginalp and J. Jones, Appl. Math. Lett.4, 97 ~1991!.
@24# G. Caginalp and J. Jones, inIMA Volumes on Mathematics an

its Applications, edited by M. E. Gurtin and G. B. McFadde
~Springer, Berlin, 1991!, pp. 29–50.

@25# D. W. Oxtoby and P. R. Harrowell, J. Chem. Phys.96, 3834
~1992!.

@26# Ch. Charach~unpublished!.
@27# L. K. Antanovskii, Phys. Rev. E54, 6285~1996!.
@28# D. M. Anderson, G. B. McFadden, and A. A. Wheeler, Ann

Rev. Fluid Mech.30, 139 ~1998!.
@29# A. J. M. Yang, P. D. Fleming III, and J. H. Gibbs, J. Chem

Phys.64, 3732~1976!.
@30# R. Evans, Adv. Phys.28, 143 ~1979!.
@31# Ch. Charach and P. C. Fife, Open Syst. Inf. Dyn.5, 99 ~1998!.
@32# J. A. Warren and W. J. Boettinger, Acta Metall. Mater.43, 689

~1995!.
1-9


